

Seasonal dynamic of zooplankton abundance and biodiversity in the Southern Bay of Biscay - Micropolit program -Preliminary results (summer 2017- spring 2018)

Isobay XVI June, 5-7, 2018 Anglet, France

Jean d'Elbée⁽¹⁾, Aurore Gueux⁽²⁾, Jean-Baptiste Cazes⁽³⁾. Béatrice Lauga⁽⁴⁾, Mathilde Monperrus⁽²⁾

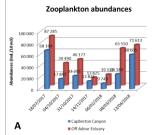

Fig. 1: Location of the the two zooplankton sampling stations

Fig. 2: Release of the Plankton Net, Niskin Bottle and Multiparameter Probe during a sampling campaign at sea.

(1) Laboratoire d'Analyses de Prélèvements Hydrobiologiques LAPHY, 1341 chemin d'Agerrea, 64210 Ahetze, France. Contact: <u>laphy@wanadoo.fr</u>

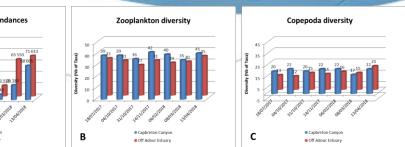
(2) CNRS/ Univ Pau & Pays Adour, Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux – IPREM - MIRA, UMR5254, Allée du Parc Montaury - 64600 Anglet, France.

 (3) Institut des Milieux Aquatiques. 1 rue de Donzac - BP 106, 64101 Bayonne Cedex, France.
(4) CNRS/ Univ. Pau & Pays Adour, Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux – IPREM - MIRA, UMR5254, 64000, Pau, France.

Introduction

The MICROPOLIT Research Program (*) aims at studying the distribution and the quantitative evolution of micropollutants on the entire marine food web of the southern Aquitaine littoral region. Especially, the zooplankton compartment, an essential part of the marine food web allows the transfer and accumulation of all micropollutants introduced into the pelagic environment by human activities. The preliminary results presented here focus on ecological data (abundance and biodiversity) of zooplankton during the period from July 2017 to April 2018.

Material & Methc


14 samples of zooplankton were collected monthly in the southern sector of the Bay of Biscay at two points, one off the Adour estuary (depth=-30 m) and another near the Capbreton canyon (depth=-150 m) (Fig. 1). Samples were collected using a plankton net (200 μ m mesh vacuum) according vertical profiles over the entire water column from the bottom to the surface. After each plankton sampling, the use of a Niskin bottle (depth: - 10 m) and a multiparameter probe allowed the acquisition of additional chemical and hydrological data (Fig. 2 and 3).

Results

About 70 taxonomic units were identified on the whole zooplankton, including a more in-depth census of 41 copepod species, the dominant group of plankton throughout the year (Fig. 4). The highest abundance values reached about 87 000 individuals/10 m³ during July 2017 (Fig 5A). Then they decreased during the whole winter period 2017-2018 to minimum values ten times lower about 9 000 individuals/10m³. A strong spring rise in abundance is recorded in 2018. During the whole period, the zooplankton abundances on the Adour Station are 20-60% much higher than those of the Canyon Station. About forty taxonomic units were identified in each sample, half of which were copepods (Fig. 5B and C). Unlike abundances, this copepodian diversity is systematically higher in the Capbreton Canyon station.

Conclusion and perspective

Our data indicated higher abundance on the station Adour and higher taxonomic diversity on the Capbreton station. In a next step we will cross these biological data with the chemical and hydrological parameters collected *in situ* in the water column, in order to evaluate the impacts of micropollutants on the dynamics of planktonic populations.

La Nouvelle-Aquitaine et l'Europe agissent ensemble pour votre territoire

(*) The MICROPOLIT Research Program "State and evolution of the quality of the South Atlantic coastal environment" is co-financed by the European Union with the European Regional Development Fund and by the Adour Garonne Water Agency. Europe is committed to Nouvelle-Aquitaine with the European Regional Development Fund.

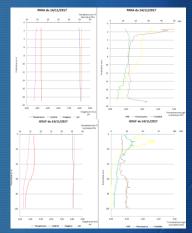


Fig. 3: Exemple of bathymetric profils of temperature (T°C), salinity (PSU), disssolved oxygen (mL/L), pH, PAR, fluorescence and turbidity (NTU) on the two stations on 2017/11/14.

Copepoda	Others zooplankton taxa
Acartia clausi	Amphicxus larvae
Astidaus armatus	Amphipoda
Bradyidius armatus	Annelida larvae
Calanidae indét.	Appendicularia Fritillaria sp.
Calanoides carinatus	Appendicularia Oikopleura sp.
Calanus helgolandicus	Bivalvia velgera
Calocalarus ovalis	Bryozoa cyphonauta
Calocalanus sp.	Chaetognatha
Calocalanus styliramis	Cirripedia cypris
Calocalanus tenuis	Cirripedia nauplii
Candacia armata	Cladocera Bosmina longirostris
Centropages bradyi	Cladocera Evadne nordmanni
Centropages chirchiae	Cladocera Evadne spinifera
Centropages hamatus	Cladocera Penila avirostris
Centropages typicus	Cladocera Pleopis polyphemoides
Clausocalanus sp.	Cladocera Podon intermedius
Clyternestra sp.	Cladocera Pseudevadne tergestina
Copepode Copepodite	Decapoda larvae
Copepode Neuplii	Doloidae
Ctenocalanus vanus	Echinodermata larvae
Cyclopina littoralia	Enteropneusta tornaria
Diaxis hibernica	Euphausiacea larvae
Ditrichocorycaeus anglicus	Fish eggs
Eucheete sp.	Fish larvae
Euterpina acutifrons	Gastropoda veligera
Harpacticoida indét.	Hydromedusa
Heterorhabdus pepilliger	Isopoda microniscus larvae
Labidocera wollastoni	Mysidacea
Mesocalarus teruicornis	Ostracoda
Metriclia lucens	Pasiphaea sivado
Microsetella rosea	Protista Acantharia
Oithone nane	Protista Globigarinida
Oithone plumifere	Protista Sticolonche zanclea
Oithone similis	Siphonophora Calycophorae
Oncese sp.	
Paracalanus parvus	
Pleurommamma sp.	
Pseudocalanus elongatus	
Temora longicomia	
Temora stylifera	
Xanthocalarus minor	

Fig. 4: List of zooplankton taxonomic units identified during the whole sampling period from July 2018 to April 2018 on the 2 stations.

Fig. 5: Zooplankton abundance and diversity at the 2 stations during sampling period July 2017-April 2018.